Reg. No.....

FOURTH SEMESTER (CUCBCSS-UG) DEGREE EXAMINATION, APRIL 2020

Mathematics

MAT 4C 04-MATHEMATICS

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all the **twelve** questions. Each question carries 1 mark.

- 1. Write Euler-Cauchy equation.
- 2. State the first shifting theorem for Laplace transforms.
- 3. Define odd function. Give an example.
- 4. What do you mean by a periodic function? Give an example.
- 5. Find $L(t+e^t)$.
- 6. Find $L^{-1}\left(\frac{s}{s^2-a^2}\right)$.
- 7. If L(f(t)) and f'(t) exists, find L(f'(t)).
- 8. Define Half range Fourier sine series.
- 9. Write one dimensional wave equation.
- 10. Write the characteristic equation of the equation y'' + 10y' + 29y = 0.
- 11. Write the error estimate the Trapezoidal rule.
- 12. Find the Wronskian of y_1, y_2 where $y_1 = \cos x, y_2 = \sin x$.

 $(12 \times 1 = 12 \text{ marks})$

Part B

Answer any nine questions. Each question carries 2 marks.

13. Solve
$$y'' + y = 0$$
, $y(0) = 3$, $y(\pi) = -3$.

14. Find a basis of solutions for
$$x^2 y'' - xy' + y = 0$$
.

15. Solve
$$(D^2 + w^2) y = 0$$
.

16. Solve
$$x^2 y'' - 2.5 xy' - 2y = 0$$
.

17. Find a particular solution of
$$y'' - 3y' - 4y = -8e^t \cos 2t$$
.

20. Find
$$L^{-1}\left(\frac{1}{(s-1)^4}\right)$$
.

21. Find
$$L\left(\frac{1-e^t}{t}\right)$$
.

22. Find the Fourier series of
$$f(x) = x - x^2$$
, $-\pi < x < \pi$, $f(x + 2\pi) = f(x)$.

- 23. A town wants to drain and fill a small polluted swamp. The swamp averages 5 feet deep. About how many cubic yards of dirt will it take to fill the area after the swamp is drained.
- 24. Show that the function $y = e^x \cos y$ is a solution of the two dimensional Laplace equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

Part C

Answer any six questions.

Each question carries 5 marks.

25. Solve the non-homogeneous equation:

$$y'' - y' - 2y = 10\cos x.$$

26. Solve the differential equation:

$$(D^2 + 4D + 4)y = \frac{e^{-2x}}{x^2}.$$

- 27. Find the inverse transform of $\frac{1}{s(s+1)(s+2)}$
- 28. Find L (t sin at).
- 29. Solve:

$$y(t) = t^3 + \int_0^1 \sin(t-u) y(u) du.$$

- 30. Find the Fourier series for f(x) = |x| is $[-\pi, \pi]$ with $f(x + 2\pi) = f(x)$.
- 31. Find the approximate solution to $y' = 1 + y^2$, y(0) = 0.
- 32. Compare the values of $\int_{0}^{1} x \, dx$ obtained by using Trapezoidal and Simpson's rule.
- 33. Given y' = -y, y(0) = 1. Find the value of y' at x, x = (0.01)(0.01)(0.04) by improved Euler method.

 $(6 \times 5 = 30 \text{ marks})$

Part D

Answer any two questions.

Each question carries 10 marks.

34. Solve:
$$x^2 y'' - zxy' + 2y = (3x^2 - 6x + 6)e^x$$

 $y(1) = 2 + 3e$ $y'(1) = 30$.

- 35. Find the inverse transform of $\frac{1}{s^2} \left(\frac{s+1}{s^2+9} \right)$.
- 36. Find the Fourier series of $f(x) = x^2$ in $[-\pi, \pi]$ with $f(x + 2\pi) = f(x)$.

Hence deduce that
$$1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} = \frac{\pi^2}{12}$$
.

 $(2 \times 10 = 20 \text{ marks})$