D 50665

Name.....

Reg. No.....

FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2023

Mathematics

MTS 5B 05—ABSTRACT ALGEBRA

(2020 Admission onwards)

Time : Two Hours and a Half

Maximum : 80 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Ceiling is 25.

- 1. Make multiplication table for \mathbb{Z}_7 .
- 2. State and prove Fermat theorem.
- 3. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 5 & 4 & 6 & 1 & 7 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 5 & 7 & 4 & 6 & 3 \end{pmatrix}$ be permutation in S₇.

Find $\sigma \tau$ and $\tau \sigma$.

- 4. State and prove cancellation property for groups.
- 5. Is \mathbb{Z}_8^x cyclic? Justify.
- 6. Let H be a subgroup of the group G. For $a, b \in G$, define $a \sim b$ if $ab^{-1} \in H$. Prove that \sim is an equivalence relation.
- 7. Find HK in \mathbb{Z}_{16}^{x} , if H = $\langle [3] \rangle$ and K = $\langle [5] \rangle$.
- 8. Let G_1 and G_2 be groups, and let $\phi: G_1 \to G_2$ be a function such that $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in G_1$. Prove that ϕ is one to one if and only if $\phi(x) = e$ implies x = e, for all $x \in G_1$.

Turn over

(Pages : 3)

- 9. Let G be a group, and let $a, b \in G$ be elements such that ab = ba. If the orders of a and b are relatively prime, prove that o(ab) = o(a) o(b).
- 10. Let $\phi: G_1 \to G_2$ be a group homomorphism, with $K = \ker \phi$. Prove that K is a subgroup of G_1 .
- 11. Let $\phi: G_1 \to G_2$ be an onto homomorphism. If H_1 is normal in G_1 , prove that $\phi(H_1)$ is normal in G_2 .
- 12. Let $G = \mathbb{Z}_{24}$ and $H = \langle [3] \rangle$. Find all cosets of H.
- 13. State second isomorphism theorem.
- 14. Prove that Aut $(\mathbb{Z}_n) \cong \mathbb{Z}_n^{\mathbf{x}}$.
- 15. If D is an integral domain, prove that D [x] is an integral domain.

Section B

Answer any number of questions. Each question carries 5 marks. Ceiling is 35.

- 16. Let n be a positive integer. Prove that :
 - (a) The congruence class $[a]_n$ has a multiplicative inverse in \mathbb{Z}_n if and only if (a, n) = 1.
 - (b) A non zero element of \mathbb{Z}_n is either has a multiplicative inverse or is a divisor of zero.
- 17. (a) Let $\sigma \in S_n$ be written as a product of disjoint cycles, prove that the order of σ is the least common multiple of the lengths of its cycles.
 - (b) Find the order of $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 5 & 3 & 2 & 1 \end{pmatrix}$.
- 18. Let G be a group and let H be a subset of G. Prove that H is a subgroup of G if and only if H is nonempty and $ab^{-1} \in H$ for all $a, b \in H$.
- 19. Let G_1 and G_2 be groups. Prove that the direct product $G_1 \times G_2$ is a group under the operation defined for all $(a_1, a_2), (b_1, b_2) \in G_1 \times G_2$ by $(a_1, a_2), (b_1, b_2) = (a_1b_1, a_2b_2)$.

- 20. If *m* and *n* are positive integers such that gcd (m, n) = 1, prove that \mathbb{Z}_{mn} is isomorphic to $\mathbb{Z}_m \times \mathbb{Z}_n$.
- 21. Give the subgroup diagram of \mathbb{Z}_{12} .
- 22. State and prove fundamental homomorphism theorem.
- 23. Let G be a group. Prove that Aut (G) is a group under composition of functions, and Inn (G) is a normal subgroup of Aut (G).

Section C

Answer any **two** questions. Each question carries 10 marks. Maximum 20 marks.

- 24. If permutation written as a product of transpositions in two ways, prove that the number of transpositions is either even in both cases or odd in both cases.
- 25. (a) State and prove Lagrange theorem.
 - (b) Prove that any group of prime order is cyclic.
- 26. State and prove Cayley theorem.
- 27. State and prove second isomorphism theorem.

 $(2 \times 10 = 20 \text{ marks})$